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Heat transfer through different model  solid disperse systems is examined.  Functional relat ions permit t ing  
ca lcula t ion  of the effect ive heat  conduct ivi ty  of the system are established. 

Let a disperse system be represented by a mechan ica l  mixture of two components.  In par t icular ,  one of the com-  
ponents may  be a gas; then the disperse system will  be a porous solid.  Let us examine  two models  of  a disperse system, 
which we will  ca l l  the model  with closed pores and the model  with interconnect ing pores.* In the first model  the basic 
mate r ia l  (component 1) is interspersed with par t ic les  of a foreign mate r i a l  (component  2), which do not interconnect .  
In the second model  the part icles  of foreign mate r ia l  are interconnecting.  Below we examine  models of disperse 
systems with long-range order, i . e . ,  systems in which the inclusions are orderly distributed and their  dimensions are 
approximate ly  the same.  Also let the inclusions be either solid or gaseous, i . e . ,  moist mater ia ls  are not considered. 

It will be shown below that the effect ive heat  conduct ivi ty  of such a system depends on the heat  conduct ivi ty  of 
component 1, the heat  conduct ivi ty  of component  2, and on the volume concentrat ion n of the inclusions (n = V2/V). 

i .  e. , 
If component  2 is a gaseous inclusion, then the volume concentrat ion coincides with the porosity p of  the system, 

n = p = V 2 / V  = 1 - -  y ' / y .  (1) 

The effect ive heat  conduct ivi ty  of a solid disperse system is convenient ly  found in the form 

),/},1 = f (n,),2/Xl), (2) 

in which k 1 character izes  heat  transfer through the solid skeleton allowing for both conduct ive Xlc and radiant k l r  
transfer components,  and ;k 2 character izes  heat  transfer through component  2. If component  2 consists of gaseous 

inclusions, then the coeff ic ient  k 2 takes into account both the molecu la r  k2m and the radiant k2r components.  

The dependence of k 1 and X z on  their  character is t ic  parameters  must be established separate ly  in the form 

h =f,(~.~o. ;~,r). >..=:~(x~o. ~.~r) or X~=f~(~.,m. X,r). (3) 
Equations (2) and (3) quant i ta t ive ly  describe the effect ive heat  conduct ivi ty  of the system. 
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Fig. 1. Lines of hea t  flow through unit cel l :  

a) v <  1; b) u>  1. 

In order to develop the form of functional  re lat ion 
(2), it is necessary to formulate more prec ise ly  the geo-  
me t r i ca l  features of the model  disperse system. 

We will  examine  first the model  with closed pores. 
It is possible to propose a number of variants of  the mutual  
spacing and form of the inclusions in a system with long- 
range order, but we will  examine  the simplest:  the 
centers of  the  cubic inclusions are distributed along 
straight lines. The functional  re la t ion (2) for such a 

model  was established in [1 -4 ] ,  Since analysis of these 

papers showed that  the most correct  derivat ion of the 
formula is that given by V. I. Odelevskii ,  we will  examfl~e his basic ideas concerning the choice  of re la t ion (2). 

In a system with long-range order, it is possible to distinguish the smal les t  volume (unit cel l ) ,  whose effect ive  

heat  conduct ivi ty  coincides with the effect ive heat  conduct ivi ty  of the disperse system. The unit ce l l  is divided into 

character is t ic  parts, whose heat  resistance is easy to ca lcula te ;  further, the to ta l  resistance of the ce l l  is ca lcu la ted  by 
the method of e lec t ro thermal  analogy.  Different ways of divid.ing the unit ce l l  into its character is t ic  parts are possible.  

Different divisions lead to different formulas, which give different numer ica l  values of  the effect ive heat  conduct iv i ty .  

Odelevskii  proposed the following form for relat ion (2): 

1 1 2~2 
)~ = 1 - - •  , v = - - ,  (4) 
)'1 1 - -  ~ )h  

*For brevity,  component 2 is ca l led  a pore; in par t icular ,  if component 2 is a gas, then the concept  "pore" conforms 

with the usual defini t ion.  
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which leads to intermediate numerical results for X. This is attained by a particular choice of the characteristic parts 
of the unit cell. 

In establishing relation (4), Odelevskii implicitly assumed that the heat flow lines in the unit cell  were not dis- 
torted. Actually, when k i  ~ X 2 the heat flow lines are distorted and take the form shown in Fig. 1. In calculating 
the effective heat conductivity of the system this can lead to errors, the magnitude of which must be estimated. With 
this aim we carried out a special investigation on an electric analog computer. The investigation was carried out at 
five values o f n  = 0, 0.216, 0.512, 0.729, and 1, and four different values o f v  = 0, 0.3,  0.5, and 1. 

In the table the results obtained using the electric analog computer are compared with the results calculated from 
(4). 

Values of Effective Heat Conductivity 

0.216 

0 0.3 ] 0,5 

_ _  0  __26 0 8  o.87____2_4 

k t 0.7071 0,816 I 0 876 

0.512 

olo3Lo5 
- -  0,576 0.700 

0.3881 0.596 I 0.722 

0,729 

0 ] 0.3 
t 

0.197 0,45______~5 _ _  

0.2001 0,457 

0,5 

0,625 

0.619 

For n = 0 and 1 and u = t the values of the effective heat conductivity obtained from (4) are X= k 1, which is obvious. 
Comparison of the results obtained shows that they differ by no more than 4%, which lies in the limits of instrumental 
error of the analog computer. 

It is interesting to examine the form of (2) for models with inclusions of different shapes. For spherical inclusions 
relation (2) was established in studies of  the effective dielectric constant or electrical conductivity of two-component 
systems [6-8] .  The results calculated from the formulas given in these papers and from (4) virtually coincide. 
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Fig. 3. Model system 
with interconnecting 
pores: a) diagram of 
model; b) unit cell .  

Fig. 2. Dependence of the effective heat conductivity of a system with closed 
pores on the concentration and heat conductivity of the skeleton X 1 and inclusions 
Xz according to Eq. (4): 1) u = 0; 2) 0.1; 3) 0.2; 4) 0.3; 5) 0.4; 6) 0.5; q) 0.6; 
8) 0.7; 9) 0.8; 10) 0.9; 1!) 1.0; 12) 1.1; 13) 1.2; 14) 1.4; 15) 1.6; 16) 1.8; 17) 2.0.  

The results of the investigation indicate that cubic and spherical inclusions give practically the same values for 
the effective heat conductivity of the system. Further, distortion of the flow lines in the unit cell has little influence 
on the effective value of  the heat conductivity. Finally, of the numerous formulas for the heat conductivity of a system 
with closed pores, the best is that proposed by Olevskii. In Fig. 20 levsk i i ' s  relation (4) is given in graphical form. 

The models examined above relate to systems with closed cubic or spherical pores. We failed to discover in the 
literature an expression for the heat conductivity of systems with interconnecting pores. A model of  such a system is 
represented in Fig. aa, while Fig. Bb shows the unit cell.  We denote by l the basic dimension of a pore (second com-  
ponent), and by L the outside dimension of the unit cell, h = PAX is the thickness and width of a rib of the skeleton, 
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V and V1 are the total volume and the volume of the skeleton in the unit cell ,  and V 2 is the volume of the second 
component. 

We will establish a relation between the volume concentration n and the ratio h/l .  Since the unit cell is sym r 
metrical,  it is sufficient to examine a quarter of it, the volumes of which may be denoted by V', V{, and V~. It is 
obvious that 

V ' - -  ~I L:', V~=A2(3L--4A). 
4 

Then 

v , 

h A/I 

L 2 (1 ~- h) 1. +- 2 A/1 

We set A/L = x; then (5), with account for (1), can be written 

4x : ~ - 3 x  ~ + h = 0 ,  k - = ( 1 - - n ) / 4 .  (6) 

Solving (6) for x in the usual way and noting that 

we obtain the relation n = n (n/l)  (for n = 0, 0.1, 

2.47, 1.75, 1.29, 0.846, 0.700, 0.567, 0.39G, 

h'l --r'(0.5 - - x ) ,  

0.2, 0.3, 0.4, 0.5, 0.6, 

0.244, and 0). 

(#) 

0.7, 0.8,  0.9,  and 1.0; h/ l  = ~, 4.21, 
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Fig. 4. A quarter of the unit cell Ca) and heat resistance connection diagram (b), 

Fig. 5. Relation between the effective heat conductivity of a system with interconnecting 

pores and the concentration and heat conductivity of the skeleton k l  and the inclusions k 2 

according to (11), 1-17) see Fig. 2. 

We will now calculate the heat resistance of the separate elements of the cell ,  assuming that the heat flow lines 

are parallel  to each other and parallet to the vertical generators of the cell .  We divide one quarter of the unit eel1 into 

four parts (Fig. 4a) and calculate  their heat resistance: 

L 2 2 4L 
R 1 -  , R 2 -  , R : ~ -  , R ~ = -  (8) 
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The effective heat resistance of the quarter cell  

R e f f =  4.9~ L. 

The heat resistance connection diagram is given in Fig. 4b, from which it follows that 

Zef f = a t --] . . . .  ~__ ,) _ : I,.'le, i :.,_ , - a ' .  R '  =-  2 R . ,  -I- R a ,  ~i 

From (8)-(10) we obtain 

( ht _ h( ")11 " ] '  _ - -  : ~  . . . . .  
x -f-  " I . . . . . . . .  L 2 ,, - U  I .... L l . . . .  Z ( l ) , 

(9) 

(10) 

(11) 

L l ' " h h/ l  L, =- t,, -. --  .~ :.-= ~ - . . .  (12) 
L 1 -'- h/l  "q 

Equation (11) gives the structure of the functional relation (2) for disperse systems with interconnecting pores. 
Assigning n, we find from the data presented above the ratio hfl ,  from (12) we calculate  h/L and, knowing u, from 
(11) we determine the effective heat conductivity of the system. 

Thus, for model disperse systems with closed pores the functional relation (2) is represented analyt ical ly  by (4) 

�9 and graphically by Fig. 2; for models with interconnecting pores this relation is given by (11) and by Fig. 5. 

Let us now find the structure of (3) for porous systems (component 2 a gas). Let 8 be the pore size, and S its 

corss-sectional area; then the effective O2eff conductivity of the pore is equal to the sum of the molecular O2m and 
radiant O2r conductivities, and since 

cr2i --= L., i S:-8 (i = eft, m, r), 

) ....... )~"-m@ )'~r �9 (1,3) 

The molecular heat conductivity can be calculated from the equation [9] 

) ' 0  
m.m = 1 § B--/H-5- B = 760 k+14k- (pr)_~ 2 a a A. (14) 

The radiant heat conductivity in tile pore call be calculated from the equation [5, 6] 

~.2r - -  2 ~2 C T  3 ;. (15) 

If the material  of tl:e :;keleton is opaque to radiation, the heat conductivity X t is completely determined by con- 

ductive transfer, i . e . ,  Xt =. X~c. For a transparent skeleton it remains necessary to find the structure of (a) .  

We note that the derived furJctional relations (2), (4), and (11) can be adapted to solid disperse phases with in-  

clusions consisting of a mechanical  mixture of many materials.  Let, for example,  an inclusion consist of two different 

components. First it is necessary to consider the inclusion as one material  and to use (4) or (11) to determine the 

effective heat conductivity of the system; subsequently, however, the same relations are applied only to the inclusions 

and the structure of the heat conductivity of the two-component inclusions is found, and so on. 

Notation 

X-effec t ive  heat conductivity; k 1 and X2-heat  conductivity of components 1 and 2; X0-heat  conductivity of gas; 

W - v o l u m e  occupied by component 2; V - t o t a l  volume of system; ) " - v o l u m e  weight of solid; ) ' - spec i f ic  weight of 

component; k - r a t i o  of specific heats of gas at constant pressure and volume; a - a c c o m m o d a t i o n  coefficient; A - m e a n  

free path of molecule under normal conditions; H--gas pressure; s--emissivi ty of pore surface; C = 5.67 x 10 -s W / m . d e g -  
Stefan-Boltzmann constant; T - m e a n  absolute temperature of material .  
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